
Providing RESTful Web Services MiServer 3.0 

 

Page 1 of 8 

A MiSite can be configured to provide RESTful web services.  This document describes the steps 

necessary to do so.   While we will cover some RESTful concepts, this is not tutorial on RESTful web 

services themselves – for a good overview of RESTful web services, please see 

http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069.  

Web Service Technologies 

A web service is a method of communication between two processes over a network.  While a web 

service does not have a GUI interface, GUI interfaces that interact with web services through their APIs 

are common.  For example, a web page that prompts for a postal code may use a web service for 

validation, but it's the web page that provides the GUI, not the web service. 

Currently, there are two predominant web service technologies – SOAP-based and REST.  SOAP-based 

web services use XML-based protocols for message exchange.  Dyalog provides support for SOAP-based 

web services with SAWS, the Stand Alone Web Services framework.  REST (Representational State 

Transfer) web services have become popular for providing public APIs.  REST is an architectural style, 

unlike SOAP which is a standardized protocol.  REST makes use of HTTP, and does not create any new 

standards. It can structure data into XML, YAML, or any other machine readable format, but usually 

JSON – JavaScript Object Notation – is preferred.  REST is very data-driven, compared to SOAP, which is 

strongly function-driven.  A web service that uses REST is termed "RESTful". 

The 5 Minute Oversimplified Guide to REST 

This section is intended to give you a very basic understanding of REST.  REST implements a verb-noun 

style of interaction. 

REST has the following characteristics: 

 Client-Server: a pull-based interaction style: consuming components pull representations. 

 Stateless: each request from client to server must contain all the information necessary to 

understand the request, and cannot take advantage of any stored context on the server. 

 Cache: to improve network efficiency responses must be capable of being labeled as cacheable 

or non-cacheable. 

 Uniform interface: all resources are accessed with a generic interface (e.g., HTTP GET, POST, 

PUT, DELETE). 

 Named resources - the system is comprised of resources which are named using a URL. 

 Interconnected resource representations - the representations of the resources are 

interconnected using URLs, thereby enabling a client to progress from one state to another. 

 Layered components - intermediaries, such as proxy servers, cache servers, gateways, etc, can 

be inserted between clients and resources to support performance, security, etc. 

Verbs 

The verbs in REST are the set of HTTP commands.  If you're familiar with web site technology, you 

probably already know about the HTTP commands GET and POST.  The HTTP protocol has several other 

commands that are often used for RESTful web services.  The first four verbs are typically used to 

http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069


Providing RESTful Web Services MiServer 3.0 

 

Page 2 of 8 

implement CRUD – the operations CREATE, READ, UPDATE, and DELETE. 

 

Verb (HTTP Command) Common RESTful Use 

GET READ – retrieve a resource 

POST UPDATE – update an existing resource 

PUT CREATE – create a new resource 

DELETE DELETE – delete a resource 

HEAD check if a resource exists 

OPTIONS query what verbs are available for a resource 

Nouns 

The nouns in REST are resources and are accessed via URIs (Uniform Resource Identifiers). 

A resource is some collection of data.  It could be a list of customers, information about a specific 

customer, a list of orders for a specific customer, the order details for a specific order for a specific 

customer,... you get the idea.  

A URI is simply a string of characters to identify a resource.  You're probably most familiar with URLs, 

which is a type of URI that identifies a web address - typically a file somewhere on the web.  A URI 

doesn't necessarily have to point to an actual physical resource like a file, it merely identifies an entity 

that is considered a resource.  For instance, the URI http://someWebService.com/customer/123 might 

identify the customer with id 123 though there may not be an actual physical file for customer 123. 

A Few Observations 

 REST is very flexible and you have the power to implement (or not) whatever set of verbs upon  

whatever resources make sense for your application.  For instance: 

POST http://myservice/Persons/ might add a new record to the Persons table in your 

application, but 

POST http://myservice/ may not make any sense in the context of your application. 

 Many web services that claim to be "RESTful" have aspects that violate REST principles.  In fact 

some RESTful advocates condemn such practices with almost religious fervor.   

MiServer gives you a framework to flexible design and develop web services that use standard HTTP 

commands and can return results in a variety of formats.  How "purely" RESTful you care to make your 

web service is entirely up to you.  

http://somewebservice.com/customer/123
http://myservice/Persons/
http://myservice/


Providing RESTful Web Services MiServer 3.0 

 

Page 3 of 8 

Implementing a RESTful Web Service in MiServer 

Configuration 

In your MiSite configuration folder, create or update the following entries in Server.xml. 

 Set RESTful to 1 – this is important so that MiServer knows how to interpret URIs.   

For example, the URI http://myservice/Persons/Brian  

RESTful≠1 – look for the file /Persons/Brian 

RESTful=1 – look for the file /Persons and supply "Brian" as a parameter 

 

 Set AllowedHttpCommands to a comma-delimited string of the verbs you wish to support in 

your web service. 

<Server> 
 <RESTful>1</RESTful> 
 <AllowedHTTPCommands>get,put,delete,post</AllowedHTTPCommands> 
</Server> 

It is strongly recommended that you update /Config/Server.xml file in your MiSite folder and not 

at the MiServer level. 

RESTful Page Requirements 

Use the RESTfulPage base class for your pages 

Instead of using MiPage, or some other base class, you will use RESTfulPage as the base class for your 

RESTful pages. 

:Class myService : RESTfulPage 
:EndClass 

Use Respond instead of  Compose 

MiServer expects a RESTfulPage page to have a public method named Respond which returns the 

results for your web service.   

Respond must be niladic and return a result. 

    ∇ r←Respond 
      :Access public 
      ⍝ your code here 
    ∇ 

  

http://myservice/Persons/Brian


Providing RESTful Web Services MiServer 3.0 

 

Page 4 of 8 

Features of the RESTfulPage Base Class 

The RESTfulPage base class shares many features of the MiPage class. 

 data elements passed with the HTTP request, either via query parameters in the URI, or in the 

message body are stored in _PageData and are accessible with the GET method. 

 _Command returns the lowercased HTTP command 

 _URI returns a vector of vectors containing the segments of the URI 

e.g. for the URI /customer/123/order, _URI will contain 

      _URI 
┌────────┬───┬─────┐ 
│customer│123│Order│ 
└────────┴───┴─────┘ 
Note: the first element is the name of your RESTful page. 

 The SetStatus method is used to set the HTTP status code (for more detail about HTTP status 
codes see: http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html ). 
Note: Status 200 (OK) is set by default; you only need to set the status when something goes 
wrong, like a resource not being found (status 404). 

 The SetHeader method is used to set HTTP headers in the response. 
MiServer takes care of setting most headers like content-length and 
content-type for you. 

  

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


Providing RESTful Web Services MiServer 3.0 

 

Page 5 of 8 

Examples 

Simple Read Only Loan Calculation Service 

The page below implements a loan calculation web service. 

The parameters are provided in the query string of the URI. 

The results are stored in a namespace, which MiServer converts into a JSON object in the response.  

[0] 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 
[14] 
[15] 
[16] 
[17] 
[18] 
 

[0] :Class mortgagews : RESTfulPage 
[1] ⍝ payment calculation 
[2]     calcpmt←{0::'Error' ⋄ p r n←⍵÷1 1200 (÷12) ⋄ .01×⌈100×p×r÷1-(1+r)*-n} 
[3] ⍝ principal calculation 
[4]     calcprin←{0::'Error' ⋄ r n m←⍵÷1200 (÷12) 1 ⋄ .01×⌈100×m÷r÷1-(1+r)*-n} 
[5] 
[6]     ∇ response←Respond;mask;r ⍝ render the initial page 
[7]       :Access Public      
[8]       r←⎕NS '' 
[9]  r.msg←'Please provide either (prin rate term) or (rate term pmt)' 
[10]       :If 1=+/mask←⍬∘≡¨r.(prin rate term pmt)←⍬ Get 'prin rate term pmt' 
[11]           :If mask[1] ⍝ principal missing 
[12]               r.(msg prin)←'' (calcprin r.(rate term pmt)) 
[13]           :ElseIf mask[4] ⍝ payment missing 
[14]               r.(msg pmt)←'' (calcpmt r.(prin rate term)) 
[15]           :EndIf 
[16]       :EndIf 
[18]     ∇ 
[19] :EndClass 

Sample Request:       GET localhost:8080/mortgagews?prin=100000&rate=.05&term=30 

Response: {msg:"",pmt:279.88,prin:100000,rate:0.05,term:30} 

 

Discussion: 

Line [0] declares the mortgagews class which is based on the RESTfulPage base class. 

Lines [2] and [4] define functions for payment and principal calcucations 

Line [6] begins the definition of the mandatory Respond method 

Line [7] Don't forget the method needs to be public! 

Line [8] Initializes the namespace that will contain the result(s) of the web service 

Line [9] Sets a default message (the msg element in the namespace) 

Line [10] transfers the elements passed in the URI to the result namespace and checks that only one 

element in the calculation is missing 

Lines [11] and [13] check if the missing element is either the principal or the payment 

Lines [12] and [14] perform the calculation for the missing element and set the result msg and pmt 

elements 

MiServer converts the namespace returned by Respond into a JSON structure which it sends in the 

response to the client. 

  

http://localhost:8080/mortgagews?prin=100000&rate=.05&term=30


Providing RESTful Web Services MiServer 3.0 

 

Page 6 of 8 

A More Comprehensive Example 

The RESTful sample MiSite found at https://github.com/Dyalog/MiSites/RESTful contains the 

mortgagews web service presented earlier as well as more complex web service, customer, that 

implements a small customer and order database.   

The zip file https://github.com/Dyalog/MiSites/blob/master/RESTful.zip contains a zipped copy of the 

MiSite and can be downloaded by: 

1) Navigating to the link for the zip file 

2) Clicking the "Raw" button in GitHub 

3) Saving the zip file to your local drive 

Once you have downloaded and unzipped the file, you may start the web service by loading the 

miserver workspace and entering: 

      Start 'path/RESTful' 

Where path is the destination path where you unzipped RESTful. 

The file demorest.txt in the  path/RESTful folder contains a demonstration that can be executed 

using the ]demo user command. 

      ]demo path/RESTful/demorest.txt 

The demonstration will walk through examining various aspects of a MiServer-based RESTful application.  

Some of those aspects are presented in the material that follows. 

The RESTful MiSite represents one approach to implement a RESTful web service; you have the flexibility 

to implement your web service using this or any other approach you find more appropriate. 

Config/Server.xml 

The Server.xml file contains settings for the RESTful MiSite. 

<Server> 
    <Name>MiServer Sample RESTful Application</Name>    
    <ClassName>SimpleSampleServer</ClassName> 
    <RESTful>1</RESTful> 
    <AllowedHTTPCommands>get,put,delete,post,options</AllowedHTTPCommands> 
</Server> 

<Classname> defines the name of the class (SimpleSampleServer) that is based on the MiServer 

base class.  Classes derived from MiServer allow the user to customize server behavior. 

  

https://github.com/Dyalog/MiSites/RESTful
https://github.com/Dyalog/MiSites/blob/master/RESTful.zip


Providing RESTful Web Services MiServer 3.0 

 

Page 7 of 8 

SimpleSampleServer 

:Class SimpleSampleServer : MiServer 
    ∇ make args 
      :Access Public 
      :Implements Constructor :Base args 
    ∇ 
 
    ∇ onServerStart 
      :Access public override 
      ⍝ Create the sample "database" 
      #.bl.Init 
    ∇ 
:EndClass 

SimpleSampleServer overrides the onServerStart method to run #.bl.Init which initializes the 

"database" for the web service.  #.bl is a namespace which implements the business logic for our web 

service and is located in the path/RESTful/Code folder.  Any APL script files located in this folder are 

loaded during MiServer initialization. 

HTTPCmd 

Also located in the path/RESTful/Code folder is the HTTPCmd utility from Conga (Dyalog's TCP/IP 

toolkit).  HTTPCmd is necessary to test the web service from APL.  HTTPCmd is an operator that can issue 

any HTTP command. 

As you step through the demostration, you will see the following examples: 

('options' HTTPCmd) 'localhost:8080/customer/'  ⍝ retrieve the documentation 

('get' HTTPCmd) 'localhost:8080/customer/'      ⍝ retrieve the customer list 

('get' HTTPCmd) 'localhost:8080/customer/1200'  ⍝ retrieve customer 1200 

('get' HTTPCmd) 'localhost:8080/customer/1200/order/' ⍝ all orders for customer 1200 

('get' HTTPCmd) 'localhost:8080/customer/1200/order/9/' ⍝ order details for order 9 

('get' HTTPCmd) 'localhost:8080/customer/0'   ⍝ non-existent customer  

('post' HTTPCmd) 'localhost:8080/customer/' ('name' 'Nick') ⍝ add a new customer 

('put' HTTPCmd) 'localhost:8080/customer/400/' ('name' 'Dan') ⍝ update a customer 

('delete' HTTPCmd) 'localhost:8080/customer/1200/'  ⍝ delete customer 200 

  



Providing RESTful Web Services MiServer 3.0 

 

Page 8 of 8 

Customer.Respond 

The Respond method in the customer MiPage examines the HTTP command for the request and calls 

the appropriate method for the operation. 

    ∇ r←Respond;custid;urlParams 
      :Access public 
      r←'' 
      :Select _Command  ⍝ which HTTP command? 
      :Case 'post' ⋄ r←AddCustomer       ⍝ create new customer 
      :Case 'get' ⋄ r←GetCustomer        ⍝ retrieve 
      :Case 'put' ⋄ r←UpdateCustomer     ⍝ update 
      :Case 'delete' ⋄ r←DeleteCustomer  ⍝ delete 
      :Case 'options' ⋄ r←Documentation  ⍝ documentation 
      :Else ⍝ invalid command 
          SetStatus 400 ⍝ Bad Request 
          →0 
      :EndSelect 
      
      :If 0∊⍴r 
          SetStatus 404 ⍝ Not Found 
      :EndIf 
    ∇ 

customer.GetCustomer 

The getCustomer method does the most analysis of the URI to determine what action to perform. 

∇ r←GetCustomer 
:Select ⊃⍴_URI 
  :CaseList 0 1 
    :If ~0∊⍴r←#.bl.GetCustomer _URI 
      r←'custid' 'custname' 'custURI'Annotate r,makeCustomerURI¨r[;1] 
    :EndIf 
  :CaseList 2 3   ⍝ GET customer/custid/order or customer/custid/order/orderid 
    :If 'order'≡2⊃_URI 
      :If ~0∊⍴r←#.bl.GetCustomerOrders 1⊃_URI 
        :If 2=⍴_URI ⍝ retrieve list of orders for customer 
          r←'orderid' 'custid' 'orderdate'Annotate r 
        :ElseIf ~0∊⍴r←(1⊃_URI)#.bl.getCustomerOrder(3⊃_URI) 
          r←'order' 'details'#.JSON.toNS('orderid' 'custid' 'orderdate')('qty'  
                                          'productid' 'productname')Annotate¨r 
        :EndIf 
      :EndIf 
    :Else 
      SetStatus 400 'Invalid format' 
    :EndIf 
:EndSelect 
∇ 

 


